Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 207: 108328, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183902

ABSTRACT

The implementation of salt stress mitigation strategies aided by microorganisms has the potential to improve crop growth and yield. The endophytic fungus Metarhizium anisopliae shows the ability to enhance plant growth and mitigate diverse forms of abiotic stress. We examined the functions of M. anisopliae isolate MetA1 (MA) in promoting salinity resistance by investigating several morphological, physiological, biochemical, and yield features in rice plants. In vitro evaluation demonstrated that rice seeds primed with MA enhanced the growth features of rice plants exposed to 4, 8, and 12 dS/m of salinity for 15 days in an agar medium. A pot experiment was carried out to evaluate the growth and development of MA-primed rice seeds after exposing them to similar levels of salinity. Results indicated MA priming in rice improved shoot and root biomass, photosynthetic pigment contents, leaf succulence, and leaf relative water content. It also significantly decreased Na+/K+ ratios in both shoots and roots and the levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide, while significantly increasing proline content in the leaves. The antioxidant enzymes catalase, glutathione S-transferase, ascorbate peroxidase, and peroxidase, as well as the non-enzymatic antioxidants phenol and flavonoids, were significantly enhanced in MA-colonized plants when compared with MA-unprimed plants under salt stress. The MA-mediated restriction of salt accumulation and improvement in physiological and biochemical mechanisms ultimately contributed to the yield improvement in salt-exposed rice plants. Our findings suggest the potential use of the MA seed priming strategy to improve salt tolerance in rice and perhaps in other crop plants.


Subject(s)
Metarhizium , Oryza , Endophytes , Oryza/microbiology , Salt Tolerance , Antioxidants
2.
Sci Rep ; 13(1): 8331, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221248

ABSTRACT

The entomopathogenic fungus (EPF), Beauveria bassiana, is reported as the most potent biological control agent against a wide range of insect families. This study aimed to isolate and characterize the native B. bassiana from various soil habitats in Bangladesh and to evaluate the bio-efficacy of these isolates against an important vegetable insect pest, Spodoptera litura. Seven isolates from Bangladeshi soils were characterized as B. bassiana using genomic analysis. Among the isolates, TGS2.3 showed the highest mortality rate (82%) against the 2nd instar larvae of S. litura at 7 days after treatment (DAT). This isolate was further bioassayed against different stages of S. litura and found that TGS2.3 induced 81, 57, 94, 84, 75, 65, and 57% overall mortality at egg, neonatal 1st, 2nd, 3rd, 4th, and 5th instar larvae, respectively, over 7 DAT. Interestingly, treatment with B. bassiana isolate TGS2.3 resulted in pupal and adult deformities as well as decreased adult emergence of S. litura. Taken together, our results suggest that a native isolate of B. bassiana TGS2.3 is a potential biocontrol agent against the destructive insect pest S. litura. However, further studies are needed to evaluate the bio-efficacy of this promising native isolate in planta and field conditions.


Subject(s)
Beauveria , Biological Control Agents , Spodoptera , Animals , Bangladesh , Gossypium , Larva , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...